Deep learning-based 3D human pose estimation performs best when trained on large amounts of labeled data, making combined learning from many datasets an important research direction. One obstacle to this endeavor are the different skeleton formats provided by different datasets, i.e., they do not label the same set of anatomical landmarks. There is little prior research on how to best supervise one model with such discrepant labels. We show that simply using separate output heads for different skeletons results in inconsistent depth estimates and insufficient information sharing across skeletons. As a remedy, we propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks. The discovered latent 3D points capture the redundancy among skeletons, enabling enhanced information sharing when used for consistency regularization. Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model, which outperforms prior work on a range of benchmarks, including the challenging 3D Poses in the Wild (3DPW) dataset. Our code and models are available for research purposes.
translated by 谷歌翻译
我们提出了一种新的注意机制,称为全球分层注意(GHA),用于3D点云分析。 GHA通过在多个层次结构上进行一系列粗化和插值操作,近似于常规的全局点产生关注。 GHA的优势是两个方面。首先,它相对于点数具有线性复杂性,从而使大点云的处理能够处理。其次,GHA固有地具有归纳性偏见,可以专注于空间接近点,同时保留所有点之间的全球连通性。与前馈网络相结合,可以将GHA插入许多现有的网络体系结构中。我们尝试多个基线网络,并表明添加GHA始终如一地提高不同任务和数据集的性能。对于语义分割的任务,GHA在扫描板上的Minkowskiengine基线增加了1.7%的MIOU。对于3D对象检测任务,GHA将CenterPoint基线提高了Nuscenes数据集上的 +0.5%地图,而3DETR基线将SCANNET上的基线提高到 +2.1%MAP25和 +1.5%MAP50。
translated by 谷歌翻译
由于其在建模复杂操作方面的性能和灵活性,变压器在计算机视觉中变得普遍。特别重要的是“交叉注意”操作,它允许通过参与任意大小的输入功能集来学习一个向量表示(例如,图像中的对象)。最近,提出了“掩盖注意力”,其中给定的对象表示仅关注那些对象的分割掩码处于活动状态的图像像素功能。这种注意力的专业证明对各种图像和视频细分任务有益。在本文中,我们提出了另一种专业化的注意力,该专业能够通过“软遮罩”(具有连续遮罩概率而不是二进制值的那些软遮罩)参加,并且通过这些掩码概率也可以差异化,从而允许学习掩模用于注意的掩模。在网络中无需直接损失监督。这对于多种应用程序可能很有用。具体而言,我们对弱监督视频对象细分(VOS)的任务采用了“可区分的软掩盖注意力”,在该任务中,我们为VOS开发了一个基于变压器的网络,该网络仅需要单个带注释的图像框架,但也可以仅带有一个带注释的框架的视频中的循环一致性培训受益。尽管没有标记的框架中的口罩没有损失,但由于我们的新型注意力表述,该网络仍然能够在这些框架中细分对象。代码:https://github.com/ali2500/hodor/blob/main/main/hodor/modelling/encoder/soft_masked_attention.py
translated by 谷歌翻译
用于视频对象分割(VOS)的现有最先进方法(VOS)学习帧之间的低级像素到像素对应关系,以在视频中传播对象掩码。这需要大量的密集注释的视频数据,这是昂贵的注释,并且由于视频内的帧是高度相关的,因此由于视频内的帧具有很大冗余。鉴于此,我们提出了HODOR:一种新的方法,通过有效地利用被帮助的静态图像来理解对象外观和场景上下文来解决VOS的新方法。我们将来自图像帧的对象实例和场景信息编码为强大的高级描述符,然后可以用于重新划分不同帧中的这些对象。因此,与没有视频注释培训的现有方法相比,HODOR在DAVIS和YOUTUBE-VOS基准上实现了最先进的性能。如果没有任何架构修改,HODOR也可以通过利用循环一致性围绕单个注释的视频帧周围的视频上下文学习,而其他方法依赖于密集,则时间上一致的注释。
translated by 谷歌翻译
人发现是在人居住环境中导航的移动机器人的至关重要任务。激光雷达传感器在此任务中很有希望,这要归功于其准确的深度测量和较大的视野。存在两种类型的LIDAR传感器:扫描单个平面的2D LIDAR传感器和3D激光雷达传感器,它们扫描多个平面,从而形成体积。他们如何比较人检测任务?为了回答这一点,我们使用公共大规模的Jackrabbot数据集以及最先进的2D和3D激光雷达的人检测器(分别是DR-SPAAM和CenterPoint)进行了一系列实验。我们的实验包括多个方面,从基本性能和速度比较到对距离和场景混乱的本地化精度和鲁棒性的更详细分析。这些实验的见解突出了2D和3D激光雷达传感器的优势和劣势作为人检测的来源,并且对于设计将与周围人类密切运行的移动机器人特别有价值(例如,服务或社交机器人)。
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译
This article concerns Bayesian inference using deep linear networks with output dimension one. In the interpolating (zero noise) regime we show that with Gaussian weight priors and MSE negative log-likelihood loss both the predictive posterior and the Bayesian model evidence can be written in closed form in terms of a class of meromorphic special functions called Meijer-G functions. These results are non-asymptotic and hold for any training dataset, network depth, and hidden layer widths, giving exact solutions to Bayesian interpolation using a deep Gaussian process with a Euclidean covariance at each layer. Through novel asymptotic expansions of Meijer-G functions, a rich new picture of the role of depth emerges. Specifically, we find that the posteriors in deep linear networks with data-independent priors are the same as in shallow networks with evidence maximizing data-dependent priors. In this sense, deep linear networks make provably optimal predictions. We also prove that, starting from data-agnostic priors, Bayesian model evidence in wide networks is only maximized at infinite depth. This gives a principled reason to prefer deeper networks (at least in the linear case). Finally, our results show that with data-agnostic priors a novel notion of effective depth given by \[\#\text{hidden layers}\times\frac{\#\text{training data}}{\text{network width}}\] determines the Bayesian posterior in wide linear networks, giving rigorous new scaling laws for generalization error.
translated by 谷歌翻译
In this paper we study the smooth strongly convex minimization problem $\min_{x}\min_y f(x,y)$. The existing optimal first-order methods require $\mathcal{O}(\sqrt{\max\{\kappa_x,\kappa_y\}} \log 1/\epsilon)$ of computations of both $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$, where $\kappa_x$ and $\kappa_y$ are condition numbers with respect to variable blocks $x$ and $y$. We propose a new algorithm that only requires $\mathcal{O}(\sqrt{\kappa_x} \log 1/\epsilon)$ of computations of $\nabla_x f(x,y)$ and $\mathcal{O}(\sqrt{\kappa_y} \log 1/\epsilon)$ computations of $\nabla_y f(x,y)$. In some applications $\kappa_x \gg \kappa_y$, and computation of $\nabla_y f(x,y)$ is significantly cheaper than computation of $\nabla_x f(x,y)$. In this case, our algorithm substantially outperforms the existing state-of-the-art methods.
translated by 谷歌翻译
This paper presents a solution to the GenChal 2022 shared task dedicated to feedback comment generation for writing learning. In terms of this task given a text with an error and a span of the error, a system generates an explanatory note that helps the writer (language learner) to improve their writing skills. Our solution is based on fine-tuning the T5 model on the initial dataset augmented according to syntactical dependencies of the words located within indicated error span. The solution of our team "nigula" obtained second place according to manual evaluation by the organizers.
translated by 谷歌翻译